Oliver Smithies (Oxford, 1951)

Introduction of specific gene modifications in mice by the use of embryonic stem cells; gene "knockout"

Nobel 2007

Harry J. Emeleus (London, 1926)

Discovery and development of conductive polymers
Chemistry Nobel 2000

Benjamin C. Brodie (Giessen, 1849)

Bronsted-Bjerrum equation (1922-5)
Bronsted-Bjerrum equation or catalysis law, plot (1927)
Bronsted-Lowry acid concept (1923)

Bell equation (1933)
Bell-Evans-Polanyi principle (1937-8)

August C.V. Harcourt
Law of mass action (1866-7)
Doubling of reaction rate with 10 degree increment in temperature (1867)

Dixon gauze rings

Sir Harold B. Hartley (Oxford, BA 1900)

Hinshelwood equation (1927)
elucidation of mechanism of explosive mixtures of hydrogen and oxygen
Chemistry Nobel 1956

Alexander G. Ogston (Oxford, 1939?)

Anthony C. Allison (Oxford, 1947)

Sydney Brenner
Sir John E. Sulston
Genetic regulation of organ development and programmed cell death
Physiology & Medicine Nobel 2002

Oliver Smithies (Oxford, 1951)
Introduction of specific gene modifications in mice by the use of embryonic stem cells; gene "knockout"

Physiology & Medicine Nobel 2007

Alan G. MacDiarmid
Discovery and development of conductive polymers
Chemistry Nobel 2000

Alan G. MacDiarmid
Discovery and development of conductive polymers
Chemistry Nobel 2000

Benjamin C. Brodie (Giessen, 1849)

Liebig condenser
benzilic acid rearrangement (1838)

Dr. John Andraos, 2002

LIEBIG TREE #6

Liebig condenser
benzilic acid rearrangement (1838)

Liebig condenser
benzilic acid rearrangement (1838)